
Automatic Generation of Directive-Based Parallel Programs

for Shared Memory Parallel Systems

H. Jin, J. Yan and M. Frumkin

NAS System Division, NASA Ames Research Center, Moffett Field, CA 94035-1000

{hjin,yan,frumkin }@nas.nasa.gov

Abstract

The shared-memory programming model is a very effective way to achieve parallelism on

shared memory parallel computers. As great progress was made in hardware and software

technologies, performance of parallel programs with compiler directives has demonstrated

large improvement. The introduction of OpenMP directives, the industrial standard for

shared-memory pro_amming, has minimized the issue of portability. Due to its ease of

programming and its good performance, the technique has become very popular. In this

study, we have extended CAPTools, a computer-aided parallelization toolkit, to

automatically generate directive-based, OpenMP, parallel programs. We outline techniques

used in the implementation of the tool and present test results on the NAS parallel

benchmarks and ARC3D, a CFD application. This work demonstrates the great potential of

using computer-aided tools to quickly port parallel programs and also achieve good

performance.

Keywords: shared memory programming, OpenMP directives, computer-aided tools,

automated parallel code generation.

1 Introduction

Over the past decade, high performance computers based on commodity microprocessors have

been introduced in rapid succession from many vendors. These include Intel's IPSC/860, Delta

and Paragon, TMC's CM-2 and CM-5, IBM's SPI and SP2, Cray's T3D and T3E, SGI Origin

2000, PowerChallenge Onyx2, and Sun's Enterprise and HPC2 servers. These systems could be

classified into two major categories: distributed memory (DMP) and shared memory parallel

(SMP) systems. While both categories consist of physically distributed memories, the hardware

support for shared memory machines presents a globally shared address space. While all these

architectures support some form of message passing (e.g. MPI, the de facto standard today), the

SMP's further support program annotation standards, or directives, that allow the user to supply

information to the compiler to assist in the parallelization of the code. The notion of the use of

directives is not new, they have been used in many cases to allow machine-specific optimization.

Because the directives are inserted as comments, the program will maintain portability across

machines,while it will run exceptionallyfast on the machine for which thesedirectives are
written.

Currently. there are two widely accepted standards for annotating programs for parallel

executions: High Performance Fortran (HPF) and OpenMP. HPF [6] provides a data parallel

model of computation for DMP systems. OpenMP [15], on the other hand, is designed to offer a

portable solution for parallel programming on SMP systems with compiler directives. OpenMP

is, in a sense, "orthogonal" to the HPF type of parallelization because computation is distributed

inside a loop based on the index range regardless of data location. There are many advantages in

using compiler directives as opposed to writing message passing programs:

• no need for explicit data partitioning,

• scalability by taking advantage of hardware cache coherence,

• portability via standardization activities (such as OpenMP), and

• simple to program, with incremental approach to code development.

Perhaps the main disadvantage of programming with directives is that inserted directives may

not necessarily enhance performance. In the worst cases, it can create erroneous results when

used incorrectly (writing message passing codes is even more error-prone). While vendors have

provided tools to perform error-checking and profiling [13], automation in directive insertion is

very limited and often failed on large programs, primarily due to the lack of a thorough enough

data dependence analysis. To overcome the deficiency, we have developed a toolkit, CAPO, to

automatically insert OpenMP directives in Fortran programs and apply a degree of optimization.

CAPO is aimed at taking advantage of detailed interprocedurai data dependence analysis

provided by CAPTools (Computer-Aided Parallelization Tools) [7], developed by the University

of Greenwich, to reduce potential errors made by users and, with small amount of help from

user, achieve performance close to that obtained when directives are inserted by hand.

In the following, we first outline the process of programming using a shared memory model.

Then, in Section 2 we give an overview of CAPTools and discuss its extension CAPO for

generating OpenMP programs. The implementation of CAPO is discussed in Section 3. Results

of two test cases with CAPO are presented in Section 4 and conclusions are given in the last

Section.

1.1 Shared-Memory Programming Model

The shared memory model is a natural extension of the sequential programming model because

of a globally accessible address space. Users may ignore the interconnection details of parallel

machines and exploit parallelism with a minimum of difficulty. Insertion of compiler directives

into a serial program to generate a parallel program eases the job of porting applications to high

performance parallel computers.

-2-

An SNIPprogram follows a simplefork-and-join execution model. The fork-and-join program

initializes as a single light weight process, called the master thread. The master thread executes

sequentially until the first parallel construct is encountered. At that point, the master thread

creates a team of threads, including itself as a member of the team, to concurrently execute the

statements in the parallel construct. When a worksharing construct such as a parallel do is

encountered, the workload is distributed among the members of the team. Upon completion of

the parallel construct, the threads in the team synchronize and only the master thread continues

execution. The tbrk-join process can be repeated many times in the course of program execution.

1.2 OpenMP Directives

OpenMP [15] _as designed to facilitate portable implementation of shared memory parallel

programs. It includes a set of compiler directives and callable runtime library routines that

extend Fortran, C and C++ to support shared memory parallelism. It promises an incremental

path for parallelizing sequential software, as well as targeting at scalability and performance for

any complete rewrites or new construction of applications.

OpenMP follows the fork-and-join execution model. A parallel region is defined by the

"PARALLEL" and " END PARALLEL" pair. The "PARALLEL DO" or "DO" directive is an

example of a worksharing construct, which distributes the workload of a DO loop among the

members of the current thread team. An implied synchronization occurs at the end of the DO loop

unless an "END DO NOWAIT" is specified. Data sharing of variables is specified at the start of

parallel or worksharing constructs using the SHARED and PRIVATE clauses. In addition,

reduction operations (such as summation) can be specified by the "REDUCTION" clause.

Beyond the inclusion of parallel constructs to distribute work to multiple threads, OpenMP

introduces a powerful concept of orphan directives that greatly simplifies the task of

implementing coarse grain parallel algorithms. Orphan directives are directives outside the

lexicai extent of a parallel region. This allows the user to specify control or synchronization

from anywhere inside the parallel region, not just from the lexically contained region.

2 Computer-Aided Parallelization

The goal of developing computer-aided tools to help parallelize applications is to let the tools do

as much as possible and minimize the amount of tedious and error-prone work performed by the

user. The key to automatic detection of parallelism in a program and, thus parallelization, is to

obtain accurate data dependences in the program. Of course, we have to realize that there are

always cases in which certain conditions could prevent tools from detecting possible

parallelization, thus, an interactive user environment is also important. Our goal is to have

computer-aided tools automate 90% of the work and identify the other 10% that user should

focus on. CAPTools provides such an environment, so we will briefly describe the concepts of

CAPTools and then describe our extensions to the toolkit for generating directive-based parallel

-3-

codes. In order to facilitate later discussions, it is useful to first mention a few commonly-known

concepts.

2.1 Data Dependences and Dependence Analysis

There are four basic t?pes of data dependences in a program source. For two statements, SI

preceding $2, in a pro_am, the execution order of S 1 and $2 can not be changed if any one of

the following conditions exists:

1) Trite dependence - data is written in S 1 and read in $2,

2) Anti dependence - data is read in S 1 and written in $2,

3) Output dependence - data is written in S 1 and written again in $2,

4) Control dependence - $2 is executed only if Slis tested true.

For a loop, dependences can further be marked as loop-carried or loop-independent, based on the

relationship with loop iteration. For instance, the following loop has a loop-carried true

dependence of variable A, which prevents the loop from being distributed (or executed in

parallel):

DO I:l, N

A(I) = A(Z) + A(I-I)

END DO

Dependence analysis is one of the fundamental areas in compiler technologies and has been

researched for many years. Dependence analysis employs a set of tests in an attempt to disprove

the existence of a dependence. The Greatest Common Divisor test [1] and Banerjee's inequality

test [5] are the two commonly used algorithms. Since dependence analysis is not the focus of this

work, we refer interested readers to the relevant literature ([8] and therein).

2.2 CAPTools

The Computer-Aided Parallelization Tools (CAPTools) is a software toolkit that automates the

generation of message-passing parallel code. The parallelization environment of CAPTools is

outlined in Figure I (for details, see reference [7]). CAPTools accepts FORTRAN-77 serial code

as input, performs extensive dependence analysis, and uses domain decomposition to exploit

parallelism. The tool employs sophisticated algorithms to calculate execution control masks and

minimize communication. The generated parallel codes contain portable interface to message

passing standards, such as MPI and PVM, through a low-overhead library.

-4-

Therearetwo important strengths
that make the tool stands out.

Firstly, an extensive set of
extensions[8] to theconventional
dependenceanalysis techniques
has allowed CAPTools to obtain

much more accuratedependence
information and, thus, produce
more efficient parallel code.
Secondly, the tool containsa set
of browsers that allow user to

inspect and assist parallelization
at different stages.

J Serial code

+

_1 Dependence Analysis
Array Partitioning

L

Mask Calculation

_. Communication

Generation

 eOe.e,a,io.I

Parallel code

User

Knowledge

User
interaction

Browsers

1

Figure 1: Schematic flow chart of the CAPTools

parallelization environment for message passing programs.

2.3 Generating Directive-Based Parallel Programs

To generate directive-based parallel programs for shared memory systems, we developed a

CAPTools-based Automatic Parallelizer with OpenMP, CAPO. The tool takes advantage of the

accurate data dependence analysis provided by CAPTools and complements CAPTools'

functionality. CAPO exploits parallelism at the loop level where a parallel loop is the basic

element for parallelization. A parallel loop is a loop without data dependences in loop iterations,

thus, the loop can be distributed among multiple threads. On the other hand, if two code blocks

can be proved having no data dependences, the two code blocks can be executed concurrently.

However, parallelism in this case is rare and is not considered in CAPO.

Figure 2 illustrates the schematic structure of CAPO and Section 3 discusses the detailed

implementation of CAPO. A serial Fortran 77 code is loaded into CAPO and a data dependence

analysis is performed. User knowledge can be added to assist this process for more accurate

results. The process of generating directive-based parallel code can be summarized in the

following three main stages.

1) Identifying parallel loops and parallel regions. It starts with the loop-level analysis using

the data dependence information. Loops are classified as parallel (including reduction), serial or

potential pipeline. Distributed loops (i.e. work-sharing directives willbe added for parallel

execution) are identified by traversing the call graph in a top-down approach and only outer-most

-5-

parallel loopsarechecked.Parallelregionsarethenformedaroundthedistributedloops.Attempt
isalsomadeto createparallelpipelines.Detailsaregivenin Sections3.1-3.3.

2) Optimizing loops and

regions. This stage is mainly for

reducing overhead caused by

fork-and-join and synchroniz-

ation. A parallel region is first

expanded as large as possible.

Regions are then merged together

if there is no violation of data

usage in doing so. Region

optimization is currently limited

to within a subroutine. The

synchronization between loops

can be removed if the loops can

be executed asynchronously.

Details are given in Sections 3.2

and 3.4.

3) Transforming codes and

inserting directives. Variables in

common blocks are analyzed for

their usage in all parallel regions

.,.i

Serial code]_
,_ User

Knowledge
Dependence Analysis

+
Ld

Loop-level Analysis

Parallel Region
Formation

Loop and Region

Optimization

Privatization for
Common Blocks

Variable

Usage

Analysis

User

Interaction
Browsers

T[Routine Duplication]

Directive Insertion

and Code Generation

+
l ara ,e,c° eI

in order to identify threadprivate Figure 2: Schematic flow chart of the CAPO architecture.
common blocks. If a private

variable is used in a non-threadprivate common block, the variable is treated specially. A routine

needs to be duplicated if it is called both inside and outside a distributed loop and contains

distributed loops themselves. Details are given in Sections 3.5-3.7. Directives are lastly added to

parallel regions and distributed loops by traversing the call graph with variables properly listed.

Additional analysis is performed at several points to identify how variables are used (e.g. private,

shared, reduction, etc.) in a specific loop or region. Such an analysis is required for classification

of loop types, construction of parallel regions, treatment of private variables in common blocks,

and insertion of directives.

Intermediate results can be stored into or retrieved from a database. User assistance to the

parallelization process is possible through a browser implemented in CAPO (Directives

Browser) and other browsers provided in CAPTools. The Directives Browser is designed to

provide more interactive information on reasons why loops are parallel or serial, distributed or

-6-

not distributed. User can concentrate on areas where potential improvements could be made, for

example, by removing false dependences. It is part of the iterative process of parailelization.

3 Implementation

In the following subsections, we will give some implementation details of CAPO organized

according to the components described in Section 2.3.

3.1 Loop-level Analysis

In the loop-level analysis, the data dependence information is used to classify loops in each

routine. Loop types include parallel, reduction, serial, and pipeline. A parallel loop is a loop

with no loop-carried true data dependence and no exiting statements that jump outside the loop

(e.g. RETURN). Loops with I/O (e.g. READ, WRITE) statements are excluded from consideration

at this point. If the parallel execution of a loop would cause a memory access conflict for some

variable and the variable could not be privatized, the loop can only be executed serially.

A reduction loop is similar to parallel loop except that the loop carries true dependences caused

by well-defined reduction operations, such as "+", "-", "rain", "max", etc. The reduction sum is

an example:

SUM = 0

DO I=l,

SUM :

END DO

N

SUM + A(I)

A special class of loops, called pipeline loop, has loop-carried true dependencies and

determinable dependence vectors. Such a loop can potentially be used to form parallel

pipelining with an outside loop nesting. Compiler techniques for finding pipeline parallelism

through affine transforms are discussed in [14]. The pipeline parallelism can be implemented in

OpenMP directives with point-to-point synchronization. This is discussed in Section 3.3.

A serial loop is a loop that can not be run in parallel due to loop-carried data dependences, I/O or

exiting statements. However, a serial loop can be considered for the formation of a parallel

pipeline.

3.2 Setup of Parallel Region

In order to achieve good performance, it is not enough to simply stay with parallel loops at a

finer grained level. In the context of OpenMP, it is possible to express coarser-grained

parallelism with parallel regions. Our next task is to use the loop-level information to define

these parallel regions.

There are several steps to construct parallel regions:

-7-

1) Identify distributed loopsbytraversingthecall graphin a top-downapproach.Distributed
loopscan includeparallel loops,reductionloopsandpipelineloopsin theouter-mostloop
level.Theseloopsarefurthercheckedfor granularity.

2) Find a distributed loop in a routine,starting from the leaf-noderoutinesin the call graph
andworking towardsthe mainroutine.

3) Move up asmuchaspossiblein theroutineto thetop-mostloop nestthat containsno I/O
andexiting statementsandhasnot beenincludedin a parallelregion. If anyvariableusage
would causememoryaccessconflict in thepotential parallel region and the variablecan
not beprivatized,backdown one loop nest.A parallelregion is thenconstructedaround
the distributedloop.

4) Include in the regionany precededcode blocksthat satisfythe memoryconflict testand
arenot yet includedin otherparallelregions.Orphaneddirectiveswill beusedin routines
thatarecalled insideaparallelregionbut outsideadistributedloop.

5) Jointwo neighboringregionsto form a largerparallelregion if possible.A reductionloop
is in a parallel regionby itself.

6) If the top loop in the region is a pipeline loop andthe loop is also in the top-level loop
nestingof its routine, then the loop is further checkedfor loop nest in the immediate
parentroutine. The loop canbeusedto form an "upper" level pipeline regiononly if all
thefollowing testsaretrue: a) sucha parentloopnestexists,b) eachroutinecalled inside
theparent loop containsonly a singleparallel region,andc) exceptfor pipeline loopsall
distributed loopscan run asynchronously(seeSection3.4). If any of the testsfailed, the
pipeline loop will be treatedasa serialloop.

3.3 Pipeline Setup

OpenMP provides directives (e.g. "! $OMP FLUSH") and library functions to perform the point-

to-point synchronization, which makes the implementation of pipeline parallelism possible with

directives. A potential pipeline loop (as introduced in Section 3) can be identified by checking

the dependence vectors, which are created from the symbolic information. In order to set up a

pipeline, an outside loop nesting is required.

To illustrate the concept, let us look at an example in Figure 3. Loop $2 is a potential pipeline

loop which is nested inside loop S 1. Three small code sections are inserted (as marked with bold

font in the figure). The first section before loop S 1 sets up a shared array (ISYNC) for the point-

to-point synchronization. The second section right above loop $2 synchronizes the current thread

(IAM) with the previous thread (IAM-1). Functionally it is similar to the "receive" in the

message passing, which waits for the completion of the previous thread in action. The last

section after loop $2 provides the "send" functionality to inform that the result from the current

thread is available for the next thread by updating ISYNC. The two "DO WHILE" loops are used

-8-

to wait for neighboring threads to finish their work. The '_NOWAIT" clause at the end of loop $2

is to avoid the implicit synchronization at the end of a parallel DO loop.

Setting up a pipeline across subroutine boundaries is described in Section 3.2. The pipeline

algorithm is used when parallelizing the NAS benchmark LU (see Section 4.1.2).

S1 do j

$2

$3

&

&

= 2, ny

doi =2, nx

a(i,j) = a(i,_)

+ a(i-l,j)

+ a(i, j-l)

end do

end do

! $OMP PARALLEL PRIVATE (I, J, IAM, NEIGH)

IAM = OMP_GET_THREAD_NUM()

ISYNC(IAM) = 0

! $OMP BARRIER

S1 DO J= 2, NY

IF (IAM .GT. 0) THEN

NEIGH = IAM - 1

DO WHILE (ISYNC(NEIGH) .EQ.

! $OMP FLUSH (ISYNC)

END DO

ISYNC(NEIGH) = 0

! $OMP FLUSH (ISYNC)

ENDIF

! $ OMP DO

$2 DO I = 2, NX

$3 A(I,J) = A(I,J)

& + A(I-I,J) + A(I,J-I)

END DO

I$OMP END DO NOWAIT

IF (IAM .LT. MAXTHREADNUM)

DO WHXLE (XSYNC (rAM) .EQ.

!$OMP FLUSH (ISYNC)

END DO

ISYNC(IAM) = 1

l$OMP FLUSH (ISYNC)

ENDIF

END DO

!$OMP END PARALLEL

0)

THEN

i)

Figure 3: Example of the pipeline implementation with point-to-point synchronization directives

in OpenMP.

3.4 End-of-loop Synchronization

Synchronization is used to ensure the correctness of program execution after a parallel construct

(such as END PARALLEL or END DO). By default, synchronization is added at the end of a

parallel loop. Sometime the synchronization at the end of a loop can be eliminated to reduce the

overhead. For example, in the code given in Figure 4, a "NOWAI_F' clause can be used with the

ENDDO directive to avoid many synchronizations inside the J loop.

-9-

To be able to execute two loops

asynchronously and to avoid a

thread synchronization directive

between them we have to

perform a number of tests aside

from the dependence inform-

ation provided by CAPToois.

The tests verify whether a

thread executing a portion of

the instructions of one loop will

!$OMP PARALLEL PRIVATE (J, I)

DO J:2, NY-I

!$OMP DO

DO I:I,NX

A(I,J) = A(I,J) + A(I,J-I)

END DO

!$OMP END DO NOWAIT

END DO

!$OMP END PARALLEL

Figure 4. Code with removable synchronization at the end of

the loop

not read/write data read/written by a different thread executing a portion of another loop. Hence,

for each non-private array we check that the set of written locations of the array by the first

thread and the set of read/written locations of the array by the second thread do not intersect. The

condition is known as the Bernstein condition (see [12]). If Bernstein condition (BC) is true the

loops can be executed asynchronously.

The BC test is performed in two steps. The final decision is made conservatively: if there is no

proof that BC is true it set to be false. We assume that the same number of threads execute both

loops, the number of threads is larger than 1 and there is an array read/written in both loops.

Check the number of loop iterations. Since the number of the threads can be arbitrary, the

number of iterations performed in each loop must be the same. If it cannot be proved that the

number of iterations is the same for both loops the Bernstein condition set to be false.

Compare array indices. For each reference to a non-privatizable array in LHS of one loop and

for each reference to the same array in another loop we compare the array indices. If we can not

prove for at least one dimension that indices in both references are different then we set BC to be

false. The condition can be relaxed if we assume the same thread schedule is used for both loops.

Let the array indices be represented as functions of loop indices (L1 and L2), so we want to

prove that

indexl(L1) != index2(L2), with LI=I d; L2=I d and constraint [L1/wj=LL2/wJ (1)

where d is the number of iterations and w=/-d/number_of_threads 7 is the workload per thread.

The constraint means that the indices are computed by different threads. Now we represent

indexl(L1) and index2(L2) as symbolic polynomials of L1 and L2. If the polynomials have the

same coefficients then we set BC to be true. Otherwise, if degree of at least one polynomial is

larger than 1 we set BC to be false since it would be too difficult to prove (1).

For linear index functions, we have to show that the system of equations

al*L1- a2*L2 = f, with LI= 1..... d; L2=I d and constraint LL1/wj=[L2/wJ (2)

10-

has no solutions. We apply Euclidean algorithm to find general solution of (2) in the form

L1 = LlO+a2*e, L2 = L20+al*e, for a set of integer e: el<=e<=eh. (3)

After that, test of the Bemstein condition is straightforward.

3.5 Variable Usage Analysis

Properly identifying variable usage is very important for the parallel performance and the

correctness of program execution. Variables that would cause memory access conflict among

threads need to be privatized so that each thread will work on a local copy. For cases where the

privatization is not possible, for instance, a variable would partially be updated by each thread,

the variable should be treated as shared and the work in the loop or region can only be executed

in sequential (except for the reduction operation). With OpenMP, if a private variable needs its

initial value from outside a parallel region, the FIRSTPRIVATE clause can be used to obtain an

initial copy of the original value; if a private variable is used after a parallel region, the

LASTPRIVATE clause can be used to update the shared variable.

Private variables are identified by examining the data dependence information, in particular,

output dependence for memory access conflict and true dependence for value assignment. Partial

updating of variables is checked by examining array index expressions.

The reduction operation is commonly encountered in calculation. A typical implementation of

parallel reduction has a private copy of each reduction that is first created for each thread, the

local value is calculated on each thread, and the global copy is updated according to the

reduction operator. OpenMP only supports reductions for scalar values. For array, we first

transform the code section to create a local array and, then, update the global copy in a

CRITICAL section.

3.6 Private Variables in Common Blocks

For a private variable, each thread keeps a local copy and the original shared variable is

untouched during the course of updating the local copy. If a variable declared in a common block

is private in a loop, changes made to the variable through a subroutine call may not be updated

properly for the local copy of this variable. If all the variables in the common block are

privatizable in the whole pro_am, the common block can be declared as threadprivate.

However, if the common block can not be thread-privatized, additional care is needed to treat the

private variable. For example, in Figure 5 the private array B is assigned inside subroutine SUB

via the common block /CSUB/ in loop $2. In order to have change made in SUB available to the

local copy of B inside loop $2, the variable B needs to be passed through arguments of

subroutine SUB.

-II-

Sl

S2

S3

common /csub/ b(100),

& a(100,100)

do j=!, ny

call sub(j, nx)

do i=l, nx

a(i,j) = b(i)

end do

end do

$4

S5

subroutine sub(j, nx)

common /csub/ c(100),

& a(100,100)

c(1) : a(l,j)

c(nx) = a(nx,j)

do i=2, nx-!

c(i) = (a(i+l,j) +

& a(i-l,j))*0.5

end do

return

end

S1 COMMON/CSUB/B (i00) ,A(100,100)

'$OMP PARALLEL DO PRIVATE (I, J, B)

S2 DO J:l, NY

S3 CALL SUB(J, NX, B)

DO I=l, NX

h(I,J) : B(I)

END DO

END DO

_$oMP END PARALLEL DO

$4

S5

S6

SUBROUTINE SUB(J, NX, C)

COMMON/CSUB/C_CAP (i00), A (I00, i00)

DIMENSION C(100)

C(1) = A(I,J)

C(NX) = A(NX,J)

DO I=2, NX-I

C(I) = (A(I+I,J)+A(I-I,J))*0.5

END DO

RETURN

END

Figure 5." Example of treating a private variable in a common block. The private variable B is

added to the argument list and the corresponding variable C used in the common block in SUB is

renamed to C_CAP to avoid usage conflict.

The following algorithm is implemented to treat private variables in common blocks. The

algorithm identifies and performs the necessary code transformation as described in the above

example. Let us use the following convention: R_INSIDE for routine called inside a distributed

loop, R_OUTSIDE for routine called outside a distributed loop, R_CALL for routine in a call

statement, R CALLBY for routine that makes a call to subroutine, and V (or VC, VD, VN) for a

variable named in a routine. The algorithm starts with private variables listed for a parallel region

in routine R_ORIG, one variable at a time. Each call statement in the parallel region is checked.

A list of routine-variable pairs (R_CALL,VC) is stored in RenList during the process to track

where private variables appear in common blocks and. These variables in common blocks are

renamed at the end.

TreatPrivate(V. R_ORIG, callstatement) {

check V usage in callstatement

ifV is not used in the call (via dependences) 1] is on the command parse tree

]] is not defined in a regular common block in a subroutine along the call path

return

TreatVinCall (VC, R CALL) (V is referred as VC in R_CALL) {

if VC is in the argument list of R_CALL

return VC

if R_CALL is R_OUTSIDE {

- 12-

if VC is not declared in R_CALL {

replicate the common block in which V is named as VN

set VC to V_; from the common block

set V to VN in the private variable list if R_CALL==R_ORIG

}
I
else {

add VC to the argument list of R_CALL

if VC is defined in a common block of R_CALL

add R_CALL & VC to RenList (for variable renaming later on)

else declare VC in R_CALL

for each calledby statement of R_CALL {

VD is the name of VC used in R_CALLBY

TreatVinCal I(VD, R_CALLBY) and set VD to the returned value

add VD to the argument of call statement to R_CALL in R_CALLBY

}
for each call statement in R_CALL

TreatPrivate(VC, R_CALL, callstatement in R CALL)

}
return VC

}
}

Rename common block variables listed in RenList.

This concludes our treatment of private variables in common blocks.

3.7 Routine Duplication

Routine duplication is performed after all the analyses are done but before directives are inserted.

A routine needs to be duplicated if it is called both inside and outside of a distributed loop and

the routine itself contains distributed loops. Routine duplication ensures that no directive is

inserted in the routine called inside a distributed loop.

An example of routine duplication is illustrated in Figure 6. Routine "ini t" is called before and

inside loop $2. It is duplicated (as CAP_INIT) so that directives are inserted for the parallel

loop ($5) inside INIT and the version without directives (CAP_INIT) can be called inside $2

(rename INIT to CAP_INIT at $3).

- 13-

S1

$2

$3

$4

S5

call init(nx, l,a)

do j = 2, ny

call init nx, j,a)

end do

subroutine lnit(rn<,j,a)

real a(100,100)

do i = I, nx

a(i,j)

end do

end

S1

!$OMP

$2

S3

!$OMP

CALL INIT (NX, 1 ,A)

PARALLEL DO PRIVATE (J)

DOJ: 2, NY

CALL CAP_INIT (NX, J, A)

END DO

END PARALLEL DO

$4 SUBROUTINE INIT (NX, J, A)

REAL A(100,100)

!$OMP PARALLEL DO PRIVATE (I)

$5 DOI= I, NX

A(I,J)

END DO

!$OMP END PARALLEL DO

END

S 6 SUBROUTINE CAP_INIT (NX, J, A)

REAL A(100,100)

D0I = I, NX

A(I,J)

END DO

END

Figure 6: Example of routine duplication.

4 Case Studies

Following the procedure described in Section 2.3 we have used CAPO to parallelize NAS

parallel benchmarks and ARC3D. First, each sequential code was analyzed for interprocedural

data dependences. This step was the most computationally-intensive part of the process. The

result was saved to an application database for later use. The loop and region level analysis was

then carried out to produce OpenMP directives. At this point, the user inspects the result and

decides if any changes are needed. Users assist the analysis by, for example, providing additional

information on input parameters and removing any false dependences that could not be resolved

by the tool. This is an iterative process, with user interaction involved.

In the case studies, we used an SGI workstation (R5K, 150MHz) to run CAPO. The resulting

OpenMP codes were tested on an SGI Origin2000 system, which consisted of 64 CPUs and 16

GB globally addressable memory. Each CPU in the system is a R10K 195 MHz processor with

32KB primary data cache and 4MB secondary data cache. The SGI's MIPSpro Fortran 77

compiler (7.2.1) was used for compilation with the "-03 -rap" flag.

4.1 NAS Parallel Benchmarks

NAS Parallel Benchmarks (NPB's) were derived from computational fluid dynamics (CFD)

codes. They were designed to compare the performance of parallel computers and are widely

recognized as a standard indicator of computer performance. NPB consists of five kernels and

three simulated CFD applications derived from important classes of aerophysics applications.

- 14-

The five kernels mimic the computational core of five numerical methods used by CFD

applications. The simulated CFD applications reproduce much of the data movement and

computation found in full CFD codes. Details of the benchmark specifications can be found in

[3] and the MPI implementations of NPB are described in [4].

In this study we used six benchmarks (LU, SP, BT, FT, MG and CG) from the sequential version

of NPB2.3 [4] with additional optimization described in [9]. Parallelization of the benchmarks

with CAPO is straightforward except for FT where additional user interaction was needed. In all

cases, the parallelization process for each benchmark took from tens of minutes up to one hour,

most of the time was spent in data dependence analysis. The performance of CAPO generated

codes is summarized in Figure 7 together with comparison to other parallel versions of NPB:

MPI from NPB2.3, hand-coded OpenMP [9], and versions generated with SGI-pfa [19].

4.1.1 BT and SP

Code structures of BT and SP are similar. User knowledge on the grid size was entered for the

dependence analysis in which the majority of the analysis time was spent. CAPO was able to

locate effective parallelization at the outer-most loop level. OpenMP directives were inserted

automatically without any change. Figure 7 shows that the performance of CAPO-BT and SP is

within 10% to the hand-coded OpenMP version and close to the MPI version. The "SGI-pfa"

curves represent results from the parallel version generated by SGI-fpa without any change for

SP and with user optimization for BT (see [19] for details). The lower performance illustrates the

importance of accurate interprocedural dependence analysis that usually can not be emphasized

in a compiler. It should be pointed out that the sequential version used in the SGI-pfa study was

not optimized, thus, the sequential performance needs to be counted for the comparison.

4.1.2 LU

There are at least two ways to parallelize the SSOR algorithm in LU: pipelining and hyperplane.

The pipeline method was adopted in the hand-coded MPI version. The study in [9] also indicated

that a pipeline implementation performed better than a hyperplane implementation in LU.

Following the dependence analysis and using the point-to-point synchronization provided by

OpenMP directives and illustrated in Section 3.3, CAPO was able to automatically generate a

parallel code with the pipeline algorithm. It has the same performance as the hand-coded

OpenMP as indicated in the performance curve in Figure 7. However, the directive version does

not scale as well as the MPI version. We attribute this performance degradation in the directive

implementation to less data locality and larger synchronization overhead in the I-D pipeline as

compared to the 2-D pipeline used in the message passing version.

-15-

10 3

5

3

.-. 2
It)
U

102

® 5
E

I-
c
0

10 2

5
x

U,I 3

2

10

l i i i i iii1 I

I J

ql _ - - "

t I tt i 1 t 1
I I t I I I

- -

. [___] "_AI

1 I I I I 1 I Ill I I

1 2 3 45 10 20 30

I I I I i l I I I I I I I I I I I I I I I I i I

I I I IIII
I I I I I I I

I I iJ : : ', :',',',',: t I

,-%.
I i i I I I I Ill i I

1 2 3 4 5 10 20 30

11 MPI-hand

I_A-_ OMP-hand

j--t--- CAPO

• i--3-- SGI-pfa

I I J * , ,,,*1 , ,

1 2 3 45 10 20 30

Number of Processors I Class A, Origin2000 }

Figure 7: Comparison of the OpenMP NPB generated by CAPO with other parallel versions:

MPl from NPB2.3, OpenMP by hand, and SGI-pfa.

4.1.3 FT

The basic loop structure for the Fast Fourier Transform (FFT) in one dimension in FI" is as

follows.

DO K = i, D3

DO J = i, D2

DOI = I, D1

Y(I) = X(I, J, K)

END DO

CALL CFFTZ (.... Y)

DOI = i, D1

X(I, J, K) : Y(I)

END DO

END DO

END DO

A slice of the 3-D data (X) is first copied to a I-D work array (Y). The I-D FFr routine CFFI'Z

is called to work on Y. The returned result in Y is then copied back to the 3-D array (X). Due to

the complicated pattern of loop limits inside CFFTZ, CAPTools could not disprove the loop-

carried dependences by the working array Y for loop K. These dependences were deleted by the

user in CAPO to identify the K loop as a parallel loop. The same treatment has been applied to

all three directions of FFT.

- 16-

The resulted parallel code gave a reasonable performance as indicated by the curve with filled

circles in Figure 7. It does not scale as well as the hand-coded versions (both in MPI and

OpenMPL mainly due to the unparallelized code section for matrix creation. The creation of

matrix elements in FI" v_as artificially done with random number generators, which could not be

parallelized by CAPO without restructuring the code section as done in the hand-coded version.

The better performance of the hand-coded directive version in compared with the MPI version

was due to the elimination of a 3-D data array which was needed in the MPI version. Again,

SGI-fpa generated code with lower performance.

4.1.4 CG and MG

All the parallel versions achieved similar results for CG and MG close results, especially CG.

The directive code generated by CAPO for MG performs 36% worse on 32 processors than the

hand-coded version, primarily due to an unparallelized loop in routine norm2u3. The loop

contains several reduction operations of different types, which were not detected by CAPO, thus,

the routine was ran in serial. Although this routine takes only about 2% of the total execution

time on a single node, it translates into a large portion of the parallel execution on large number

of processors, for example, 40_ on 32 processors.

4.2 ARC3D

ARC3D is a moderate-size computational fluid dynamics (CFD) application [17]. It solves Euler

and Navier-Stokes equations in three dimensions using a single rectilinear grid. Unlike the NAS

parallel benchmarks, ARC3D contains turbulent models and more realistic boundary conditions.

The Beam-Warming algorithm is used to approximately factorize an implicit scheme of finite

difference equations, which is then solved in three directions. The solver sweeps through each of

the cardinal directions one at a time, with partial updating of the fields after each sweep.

A parallel version of ARC3D with SGI multi-tasking directives was implemented by hand for the

SGI Origin2000 system [18]. Much of the work in this effort involved the optimization of cache

performance and array locality on the distributed shared-memory system. Preliminary results

show promise for achieving very high sustained performance levels. Results of parallelizing

ARC3D with CAPTools for distributed memory system in the message passing paradigm were

reported in [11].

For generating the OpenMP _parallel version of ARC3D, we used the same serial code as used in

the hand parallelization. The serial version was optimized for cache performance. CAPO was

used to perform data dependence analysis, loop and region analysis, and OpenMP directives

insertion. The generated parallel version was unchanged and tested on the Origin2000. The result

for a 194x194x194-size problem is shown in Figure 8 along with the version parallelized by

hand. The result from the message-passing version generated by CAPTools from the same serial

version is also included in the figure.

- 17-

As one can see from the figure, the

OpenMP version generated by CAPO

is essentially the same as the hand-

coded version in performance. This is

indicative of the accurate data

dependence analysis from CAPTools

and sufficient parallelism that was

explored in the outer-most loop level.

The MPI version is about 10% worse

than the directive-based versions. The

MPI version uses extra buffers for

communication and this could

contribute to the increase of execution

time. It should be pointed out,

however, that the results did not show

the effort in cache optimization of the

serial code, which would help the

parallel performance as well.

500

300
0

200

E 100
oD

C
o 5O

_ 30o

x 20
W

10

- ARC3D I"="-.. 194× 194× 194

MT by hand _,uA

© OMP-CAPO _©
. --_;-- MPI-CAPTools

l i i i i i I I11 i i

1 2 3 4 5 10 20 30

Number of Processors

Figure 8: Comparison of execution times of two

parallel versions of ARC3D: the OpenMP directive

version generated by CAPTools and a directive

version created by hand.

5 Related Work

There are a number of tools developed for code parallelization on both distributed and shared

memory systems. The KAPro-toolkit [13] from Kuck and Associates, Inc. performs data

dependence analysis and automatically inserts OpenMP directives in a certain degree. KAI has

also developed several useful tools to ensure the correctness of directives insertion and help user

to profile parallel codes. The SUIF compilation system [20] from Standard is a research product

that is targeted at parallel code optimization for shared-memory system at the compiler level.

The SGI's MIPSpro compiler includes a tool, PFA, that tries to automatically detect loop-level

parallelism, insert compiler directives and transform loops to enhance their performance. SGI-

PFA is available on the Origin2000. Due to the constraints on compilation time, the tool usually

cannot perform a comprehensive dependence analysis, thus, the performance of generated

parallel programs is very limited. User intervention with directives is usually necessary for better

performance. For this purpose, Parallel Analyzer View (PAV), which annotate the results of

dependence analysis of PFA and present them graphically, can be used to help user insert

directives manually. More details of a study with SGI-PFA can be found in [19].

VAST/Parallel [16] from Pacific-Sierra Research is an automatic parallelizing preprocessor. The

tool performs data dependence analysis for loop nests and supports the generation of OpenMP

directives.

- 18-

Parallelizationtools like FORGExplorer [2] and CAPTools [7] emphasizethe generationof
messagepassingparallel codes for distributed memory systems.These tools can easily be
extendedto handleparallelcodesin theshared-memoryarena.Our work is suchanexample.As
discussedin previoussections,the keyto the successof our tool is theability to obtainaccurate
datadependencescombinedwith userguidance.An ability to handlelargeapplicationsis also
important.

6 Conclusion and Future Work

In summary, we have developed the tool CAPO that automatically generates directive-based

parallel prograrr_s for shared memory machines. By taking advantage of the intensive data

dependence analysis from CAPTools, CAPO has been able to produce parallel programs with

performance close to hand-coded versions for NAS parallel benchmarks and ARC3D, as

summarized in Table 1. This approach is different from parallel compilers in that it spends much

of its time on whole program analysis to discover accurate dependence information. The

generated parallel code is produced using a source-to-source transformation with very little

modification to the original code and, therefore, is easily maintainable.

Table 1: Summary of CAPO applied on NAS Parallel Benchmarks and ARC3D.

"Parallelization '" includes the time spent in data dependence analysis.

Application

NPB
ARC3D

BT, SP, LU FT, CG, MG

Code Size -3000 lines/benchmark -2000 lines/benchmark -4000 lines

Parallelization 30 mins to 1 hour 10 mins to 30 mins 40 mins

Testing 1 day 1 day 1 day

Performance compared within 5-10% within 10% for CG within 6%

to hand-coded version 30-36% for FT,MG

Even though the tested problems are small to medium size, it does indicate that CAPO can

generate very efficient parallel codes in a short period of time. However, for larger, more

complex applications, it is our experience that the tool will not be able to generate efficient

parallel codes without any user interactions. In fact, CAPO has been applied to parallelize large

CFD applications (20K-100K lines) and the tool was able to point out a small percentage of code

sections where user interactions were required. The result has been reported elsewhere [10].

Future work will be focused in the following areas:

• A performance model for optimal placement of directives.

-19-

• Apply data distribution directives (such as those defined by SGI) rather than relying on

the automatic data placement policy, First-Touch, by the operating system to improve

data layout and minimize number of costly remote memory reference.

• Develop a methodology to work in a hybrid approach to handle parallel applications in a

heterogeneous environment or a cluster of SMP's. Exploring multi-level parallelism is

important.

• Develop an integrated working environment for sequential optimization, code

transformation, code parallelization, and performance analysis.

CAPO is available for testing. A copy of the tool can be obtained from one of the authors.

Acknowledgement: The authors wish to thank members of the CAPTools team at the University

of Greenwich for their support on CAPTools and Dr. James Taft for providing the ARC3D

source code used in the study. This work is supported by NASA Contract No. NAS2-14303 with

1VIRJ Technology Solutions.

References

[1] J.R. Allen and K. Kennedy. "'Automatic Translation of Fortran Programs to Vector Form,"

A CM Trans. Programming Languages Systems, 9 (1987) 491-542.

[2] Applied Parallel Research Inc., "FORGE Explorer," http://www.apri.com/.

[3] D. Bailey, J. Barton, T. Lasinski, and H. Simon (Eds.), "The NAS Parallel Benchmarks,"

NAS Technical Report RaVR-91-O02, NASA Ames Research Center, Moffett Field, CA,

1991.

[4] D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart, A. Woo, and M. Yarrow, ''The NAS

Parallel Benchmarks 2.0,'" RNR-95-020, NASA Ames Research Center, 1995. NPB2.3,

http:llwww.nas.nasa.govISoftwareINPB/.

[5] U. Banerjee, "Speedup of Ordinary Programs," Ph.D Thesis, University of Illinois at

Urbana Champaign, 1979.

[6] High Performance Fortran Forum, "High Performance Fortran Language Specification,"

CRPC-TR92225, January 1997, http://www.crpc.rice, edu/CRPC/soft iib/TRs_online, html.

[7] C.S. Ierotheou, S.P. Johnson, M. Cross, and P. Legget, "Computer Aided Parallelisation

Tools (CAPToois) - Conceptual Overview and Performance on the Parallelisation of

Struct ured Mesh Codes," Parallel Computing, 22 (1996) 163-195.

(http://captools.gre.ac.uk/)

[8] S.P. Johnson, M. Cross, and M.G. Everett, "Exploitation of symbolic information in

interprocedural dependence analysis," Parallel Computing, 22 (1996) 197-226.

- 20 -

[91

[10]

[11]

[12]

[131

[141

[151

[161

[171

[181

[19]

[201

H. Jin, M. Frurnkin and J. Yan., '"The OpenMP Implementation of NAS Parallel

Benchmarks and Its Performance," NAS Technical Report, NAS-99-011, NASA Ames

Research Center, 1999.

H. Jin, M. Frumkin and J. Yan., "Use Computer-Aided Tools to Parallelize Large CFD

Applications," to be presented at the CAS 2000 Workshop, NASA Ames Research Center.

H. Jim M. Hribar and J. Yah, "Parallelization of ARC3D with Computer-Aided Tools,"

NAS Technical Report, NAS-98-005, NASA Ames Research Center, 1998.

C.H. Koelbel, D.B. Loverman, R. Shreiber, GL. Steele Jr., M.E. Zosel. The High

Performance Fortran Handbook, MIT Press, 1994, page 193.

Kuck and Associates, Inc., "Parallel Performance of Standard Codes on the Compaq

Professional Workstation 8000: Experiences with Visual KAP and the KAP/Pro Toolset

under Windows NT," Champaign, IL; "Assure/Guide Reference Manual," 1997.

Amy W. Lim and Monica S. Lam. "Maximizing Parallelism and Minimizing

Synchronization with Affine Transforms," The 24th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, Paris, France, Jan,. 1997.

OpenMP Fortran/C Application Program Interface, http://www.openmp.org/.

Pacific-Sierra Research, "'VAST/Parallel Automatic Parallelizer," http://www.psrv.com/.

T. H. Pulliam, "Solution Methods In Computational Fluid Dynamics," Notes for the von

K'arm'an Institute For Fluid Dynamics Lecture Series, Rhode-St-Genese, Belgium, 1986.

J. Taft, "Initial SGI Origin2000 Tests Show Promise for CFD Codes," NAS News, July-

August, page 1, 1997. (http:llwww.nas.nasa.gov/PubslNASnews1971071article01.html)

A. Waheed and J. Yam "Parallelization of NAS Benchmarks for Shared Memory

Multiprocessors," in Proceedings of High Performance Computing and Networking (I--IPCN

Europe '98), Amsterdam, The Netherlands, April 21-23, 1998.

Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Amarasinghe,

Jennifer M. Anderson, Steve W.K. Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary W.

Hall, Monica Lam, and John Hennessy, "SUIF: An Infrastructure for Research on

Parallelizing and Optimizing Compilers," Computer Systems Laboratory, Stanford

University, Stanford, CA.

-21 -

